IndoBanner Exchanges

Science and Technology Headline Animator

My Headlines

What is A2DP?

A2DP technology is a new music revolution allowing you to send CD quality stereo music from one device to another without wires. A2DP is stereo music sent over Bluetooth without the hassle of plugging cables. Bluetooth Wireless Technology with A2DP technology makes mobile phones, pda’s and computers capable of streaming music directly to products such as the
X5 Stereo Headset or the Sonic Portable Speakers.

The Advanced Audio Distribution Profile (A2DP) is just one of the modes available for Bluetooth technology.


Can my mobile phone or PDA stream stereo music directly to the
X5 Headset or the Sonic Speakers?

Bluetooth
Yes, if your phone has A2DP you can send music without wires to our Sonic portable speakers and X5 Stereo headset. Check below to see
if your device is listed. New devices are often being released that include A2DP so also check our website for an updated list. New ROM upgrades are available for PDAs which may include A2DP.

Alternatively there are third-party applications and programs available for Windows Mobile and Palm devices that enable A2DP. This information will be made available on our website as it comes to hand...


What if my Bluetooth phone does not have A2DP?

X5 Stereo Bluetooth Headset
X5 Stereo Bluetooth Headset
You will still be able to use the Bluetooth handsfree functions of the X5 and Sonic with your mobile phone while streaming music from a PC. When a call comes in, the music will stop and you can answer the call. To enable your computer to have A2DP, use the external Bluetooth USB Dongle that comes with the Sonic …or the audio streamer that comes with the X5.

Though many devices already come with A2DP, for the X5 you can A2DP enable any audio device (TV, DVD, PC or Mac, Stereo, MP3 player, iPod etc) using our included “A2DP streamer”.

See below for a full list of the latest devices supporting A2DP.


A2DP compatible phones and PDA’s (Updated May 4, 2006)

ASUS
A632
A636

BenQ-Siemens
S68
S75
SL75

Cingular
3125

Eten
M600
ES03

Fujitsu-Siemens
Pocket LOOX 5xx
FJ505
FJ505c

Gigabyte
Einstein gSmart

hp
6500
6510
6515
6520
6910
6915
6920
6925
6940
6945
6965
2190
2490
2210
2495
2790
2795
4700
5100
5450
5500

HTC
Hermes
Prophet
Star Trek

imate
Smartflip

Krome
SPY

KTF
T6000

LG
CU500
U300
U890
U900
LX550 "Fusic"
LP 3900
VX 8300
VX8500

Motorola
A1200
E1070
E680i
E770
Q
ROKR E2
V3x

Nokia
8800
8801

O2
XDA Atom Pure
XDA Atom

Pantech
PT-K1700
PT-S130
PG-6200

Q-Tek
S100
8310
9000
9100

Samsung
SCH-B330
SCH-B380
SCH-i819
SCH-M600
SCH-V720
SCH-V740
SCH-V745
SGH-D510
SGH-D520
SGH-D600
SGH-D600E
SGH-D606
SGH-D608
SGH-D800
SGH-D820
SGH-E750
SGH-E760
SGH-E770
SGH-E870
SGH-i300
SGH-i300x
SGH-i308
SGH-i750
SGH-i858
SGH-P850
SGH-P858
SGH-S500i
SGH-X700
SGH-X800
SGH-Z320i
SGH-Z510
SPH-V890
SPH-V6900
SPH-V7600
SPH-V7400
SPH-V7450
SPH-V8900

Sony Ericsson
K790a
K800i
M600i
P990i
W710i
W950i
Z710i

Sprint
PPC-6700

Torq
P120

Toshiba
Pocket PC e800 BT

Verizon
VX-6700

Vodafone
VPA Compact


Computers

• Most Windows PC/Laptops with inbuilt Bluetooth can support A2DP for streaming stereo audio. Check your manufacturer's website for any Bluetooth updates that may be available.

• If your computer has Bluetooth, check its Bluetooth Driver to see if it supports the Bluetooth profiles A2DP for stereo audio, AVRCP for remote control and Headset for voice communication.

• Any Windows PC/Laptop computer can support A2DP, AVRCP and Headset using an external USB Bluetooth Dongle.

.

Source: http://www.myblueant.com/what_is_a2dp_bluetooth.htm

read more...

Trisno Heriyanto - detikinet


Ilustrasi (Ist.)
Jakarta - Peredaran virus komputer yang wara-wiri di Indonesia pada 2008 ini tak bisa dilepaskan dari geliat virus lokal. Bahkan, serangannya dinilai sebanding dengan virus luar.

Pakar anti virus dari Vaksincom Alfons Tanujaya mengatakan, sekitar 100 varian virus terdeteksi tiap bulannya. Dengan demikian, bisa dibayangkan berapa besarnya serbuan virus ini dalam kurun waktu setahun.

Nah, tentunya dari rentetan varian virus ini ada beberapa yang menonjol. Beberapa di antaranya dianggap mempunyai dampak besar bagi korbannya. Dilansir detikINET dari Vaksincom, Selasa (9/12/2008), mereka antara lain:

W32Dewi.161081
Virus yang lebih dikenal sebagai 'sang perawan' ini mulai menyebar pada Februari 2008. Virus ini menginfeksi file gambar dengan extensi .jpg, sehingga file asli tidak dapat dibuka. Tetapi tidak seperti kebanyakan virus lainnya, 'sang perawan' ini tidak memblok beberapa fungsi windows. Hanya saja ia menempatkan diri pada folder start up, sehingga setiap kali user menghidupkan PC, virus ini akan selalu menggandakan diri.

Cetix
Virus yang disinyalir berasal dari Bali ini mulai beredar sejak April 2008. Selain menginfeksi file microsoft word (.doc), cetix juga dapat menyerang folder dan virus ini pun dapat mempertahankan dirinya dengan cara melakuan restart komputer jika penggunanya berusaha menjalankan program yang berusaha mematikan virus.

Virus Hampa W32/Agent.EAOI
'Salam hangat buat orang medan' kalimat itulah yang akan muncul ketika komputer kita terjangkit virus hampa atau W32/Agent.EAOI ini. Virus yang suka menampilkan pesan-pesan dalam bahasa Medan tersebut mulai terdengar gaungnya sejak Mei 2008. Virus ini menempatkan diri pada memori komputer dan termasuk jenis virus yang sulit dihilangkan. Pasalnya, virus hampa akan melakukan log off jika kita berusaha menghapusnya. Tak tanggung-tanggung, folder maupun subfolder akan disembunyikan oleh virus ini terutama file dari flashdisk.

W32/Alman (Almanahe)
Virus ini sempat merepotkan banyak pengguna komputer di bulan Juli 2008. Memanfaatkan flashdisk atau disket sebagai media penyebarannya, W32 akan menanamkan file yang akan secara otomatis jalan jika pengguna mulai mengkoneksikan flashdisk atau disket tersebut ke dalam PC. Virus ini pun mempunyai kehebatan yang unik, ia dapat mengupdate dirinya sendiri layaknya program anti virus dan akan mencoba mendownload malware tertentu. ( ash / faw )

Sumber: http://www.detikinet.com/read/2008/12/09/171003/1050424/323/ganasnya-serangan-virus-lokal-di-2008
read more...

Selasa, 25 Nopember, 2008 oleh Merry Magdalena

Mau mencoba bagaimana rasanya minum air dari proses daur ulang urin sendiri? Wah, nanti dulu ya, tunggu dulu hasik studi lengkap dari tim ilmuwan NASA. Itu hanya salah satu misi dari Endeavour.

Tim astronot Endeavour sukses menunaikan tugas yang dimulai sepekan silam di International Space Station (ISS). Stephen Bowen bersama Shane Kimbrough telah membenahi sejumlah kerusakan. Misi ini memang salah satunya adalah memperbaiki mesin pengubah urin menjadi air minum. Peranti seharga 154 juta dolar ini masih dibutuhkan oleh para kru ISS hingga enam tahun ke depan.

Perbaikan lain jug dilakukan pada bagian sayap kanan ISS yang tidak bekerja baik selama setahun belakangan. Sejak senin kemarin semua kerusakan ini dituntaskan oleh Bowen, dan akan menjadi baru lagi pada selasa waktu setempat.

Air Daur Ulang

Tim astronot ini juga akan mengumpulkan sampel air daur ulang ke bumi untuk diteliti. Air tersebut hasil dari mesin pemroses urin menjadi air minum. Namun air tersebut belum dapat diminum siapapun sebelum melalui tes keamanan. Awak pesawat yang terdiri dari delapan lelaki dan dua perempuan ini juga akan merayakan Thanksgiving di angkasa. Jika tak ada aral, mereka akan kembali ke bumi sabtu mendatang.

Wah, indahnya petualangan luar angkasa. Kapan ya orang Indonesia ikutan?


Sumber: http://netsains.com/2008/11/astronot-endeavour-akan-boyong-urin-daur-ulang/
read more...

Kamis, 28 Februari, 2008 oleh Ardian Ulvan

Teknologi 3G yang kini bisa dinikmati itu bukan diciptakan secara simsalabim. Yuk kita mengenal seluk beluk teknologi itu. Jaringan 3G seperti WCDMA dan CDMA 2000 memiliki struktur jaringan yang kompleks dan perlu melibatkan banyak protokol untuk meng-cover seluruh sistemnya. Oleh sebab itu, jaringan akses generasi ke-4 (4G) diharapkan memiliki struktur yang lebih sederhana yang seluruhnya berbasis pada internet protocol (all-IP). Dengan berbasis pada IP, seluruh lalulintas paket dalam jaringan akses dan jaringan backbone adalah seragam, tanpa perlu mengkonversikan satu protokol ke protokol lainnya.

Sebagian besar jaringan 3G pada dasarnya dibangun di atas jaringan selular circuit-switched, dimana mereka memiliki gerbang sendiri untuk menterjemahkan paket-paket IP dari jaringan backbone. Jaringan 3G juga mempunyai protokol dan interface sendiri-sendiri dalam berkomunikasi sesamanya. Ini menjadi masalah tersendiri dalam hal interoperability. Oleh sebab itu, untuk mengatasi berbagai masalah ini, jaringan 4G dirancang sebagai sebuah jaringan all-IP yang berbasis packet switched seperti halnya jaringan backbone berbasis IP seperti intranet (LAN, WLAN) dan internet.

4G

Dalam rancangan pengembangannya, jaringan 4G mempunyai 2 visi yang berbeda. Pertama adalah jaringan 4G yang Revolusioner (4G-R), dimana dikembangkan sebuah sistem yang inovatif. Yang kedua adalah yang bervisi Evolusioner (4G-E), dimana jaringan 4G disini mempunyai kemampuan interworking dengan sistem-sistem jaringan yang telah ada. Model interworking akan mengintegrasikan jaringan-jaringan selular, jaringan nirkabel metropolitan (wireless metropolitan area networks - WMANs), jaringan nirkabel lokal (local wireless local area networks -WLANs), dan jaringan nirkable personal (wireless personal area networks - WPANs). Model interworking ini meng-cover skenario jaringan masa depan yang terintegrasi dimana setiap orang dapat mengakses jaringan kapan saja, dari mana saja, dan dengan cara apa saja.

4G-R

WLAN IEEE 802.11 adalah sistem yang telah mencapai throughput sampai dengan 54Mbps akan tetapi masih terbatas pada area layanan yang hanya mencapai beberapa ratus meter saja (200 – 300 meter). Dilain pihak, jaringan selular saat ini (seperti cdma2000 1x EV-DO) dapat mengcover layanan sejauh beberapa kilometer, akan tetapi throughput sel nya hanya mencapai 2Mbps. Berdasarkan hal ini, adalah sangat esensial untuk mengembangkan sistem yang inovatif yang memiliki throughput yang tinggi dan jangkauan layanan yang lebar.

Sistem baru 4G yang inovatif ini menggunakan teknik-teknik yang berbeda dari pendahulunya, seperti penggunaan orthogonal frequency division multiplexing/multiple access (OFDM/OFDMA) dan antenna dengan sistem multiple input multiple output (MIMO). Untuk mendukung berbagai kondisi, seperti mobilitas pengguna, baik yang bergerak dengan kecepatan tinggi atau pun yang berkecepatan rendah , jenis trafik (data atau suara), atau batasan cakupan, maka dikembangkanlah teknik-teknik yang mengkombinasikan beberapa akses jamak (hybrid multiple access).

Kandidat teknologi 4G yang paling kuat adalah teknologi jaringan yang berbasis pada standard IEEE 802.16 dan ETSI/HIPERMAN, yang dikenal dengan jaringan WiMAX. Standar jaringan ini terus dikembangkan, dari yang paling awal 802.16 yang hanya mendukung topologi akses point-to-multipoint line of sight (PMP - LOS), 802.16d yang mendukung topologi mesh non line of sight (mesh-NLOS), 802.16e yang mendukung mobilitas, hingga yang terakhir yang masih berjalan, 802.16j yang mendukung relay bergerak multi hop (multihop mobile relay-MMR) dan 802.16m advance air interface yang memungkinkan rate data 100Mb/s untuk aplikasi bergerak dan 1Gb/s untuk aplikasi tetap sesuai dengan persyaratan IMT-Advanced. Pengembangan jaringan 4G inovatif ini, terutama dalam lapisan Medium Acces Control dan lapisan fisik.

4G-E

Sementara standard air interface untuk teknologi 4G-R masih terus dalam pengembangan, demikian juga halnya untuk standard compliances dan conformances melalui WiMAX forum , maka peluang 4G-E sangat terbuka untuk dipasarkan, terutama untuk operator incumbent. Standard IP-Media Subsystem (IMS) dapat menjembatani sekaligus mengkonvergensikan berbagai teknologi jaringan, sehingga operator incumbent dengan teknologi GSM/GPRS/EDGE, UMTS/3G, maupun tradisional PSTN dapat untuk bermigrasi dan memberikan layanan 4G dengan interoperability antar sistem yang terjamin.

IMS

IP Multimedia Subsystem (IMS) adalah sebuah framework baru di bidang telekomunikasi. Pada awalnya IMS dispesifikasikan untuk jaringan bergerak, untuk mendukung layanan telekomunikasi berbasis IP. IMS diperkenalkan pertama kali oleh the Third Generation Partnership Project (3GPP) melalui dua fase pengembangan (release 5 dan release 6) untuk jaringan Universal Mobile Telecommunications System (UMTS). Dilain pihak sebuah framework IP multimedia lain juga diluncurkan oleh 3GPP2 sebagai the Multi Media Domain (MMD) untuk jaringan 3G CDMA2000. Pada akhirnya framework ini diharmonisasika dengan IMS, menjadi apa yang berlaku saat ini. Standard IP Multimedia Subsystem (IMS) ini mendefinisikan sebuah arsitektur dasar jaringan yang mendukung Voice over IP (VoIP) dan layanan-layanan multimedia lainnya. Selanjutnya standard IMS dari 3GPP/3GPP2 ini diadopsi sepenuhnya oleh badan standard ETSI menjadi ETSI/TISPAN.

Dari sini dapat kita lihat, bagaimana 2 badan standard telekomunikasi yang paling berpengaruh di dunia saling berkompetisi untuk pengembangan teknologi 4G. IEEE pada 4G-R di satu pihak dan ETSI pada 4G-E di pihak lainnya.

Dari sisi pengguna, IMS memungkinkan layanan komunikasi person-to-person dan person-to-content dengan berbagai mode komunikasi, meliputi suara, teks, gambar dan video, atau kombinasinya, dengan cara yang sangat personal dan terkontrol.

Dari sisi operator, IMS memberikan satu kemajuan penting pada konsep arsitektur layering dengan mendefinisikan sebuah arsitektur horizontal, dimana service enablers dan common functions dapat di gunakan ulang untuk berbagai aplikasi. Ini sebuah terobosan yang luar biasa pada konsep layering untuk komunikasi data. Arsitektur horizontal dalam IMS juga menspesifikasikan interoperability dan kemampuan roaming, selain itu juga menyediakan bearer control, pentarifan (charging) dan keamanan. Dan yang paling utama, ia dapat diintegrasikan dengan jaringan suara dan data eksisting dengan mengadopsi berbagai keuntungan dari domain IT.

Dengan kemampuan yang ditawarkannya, IMS menjadi jembatan untuk konvergensi jaringan bergerak dan jaringan tak bergerak. Dengan alasan inilah IMS dapat menjadi solusi bagi operator jaringan bergerak maupun tak bergerak untuk mengembangkan bisnis multimedianya dan menyajikan layanan bernilai tambah. Integrasi dari berbagai media yang berbeda membuka peluang untuk menyediakan layanan komunikasi yang lebih kaya dari pada layanan yang telah tersedia saat ini.

Meskipun mereduksi penggunaan jaringan circuit switched bukanlah tujuan IMS, dengan mungkinnya layanan suara lewat packet switched, banyak fihak yang meramalkan bahwa tereduksinya layanan circuit switched tinggal menunggu waktu saja. Akan tetapi dengan kemampuan interworking dengan jaringan circuit switched PSTN dan PLMN, setidaknya ini memperpanjang umur jaringan circuit switched.

Dengan perangkat-perangkat yang sepenuhnya berbasis software, menjadikan peluang besar sekaligus tantangan bagi kita untuk mengembangkan IMS sebagai salah satu produk telekomunikasi nasional.

Sumber: http://netsains.com/2008/02/menyibak-teknologi-di-balik-kecanggihan-3g/

read more...

New Zealand's 'Living Dinosaur' -- The Tuatara -- Is Surprisingly The Fastest Evolving Animal

ScienceDaily (Mar. 23, 2008) — In a study of New Zealand's "living dinosaur" the tuatara, evolutionary biologist, and ancient DNA expert, Professor David Lambert and his team from the Allan Wilson Centre for Molecular Ecology and Evolution recovered DNA sequences from the bones of ancient tuatara, which are up to 8000 years old. They found that, although tuatara have remained largely physically unchanged over very long periods of evolution, they are evolving - at a DNA level - faster than any other animal yet examined.


"What we found is that the tuatara has the highest molecular evolutionary rate that anyone has measured," Professor Lambert says.

The rate of evolution for Adélie penguins, which Professor Lambert and his team have studied in the Antarctic for many years, is slightly slower than that of the tuatara. The tuatara rate is significantly faster than for animals including the cave bear, lion, ox and horse.

"Of course we would have expected that the tuatara, which does everything slowly -- they grow slowly, reproduce slowly and have a very slow metabolism -- would have evolved slowly. In fact, at the DNA level, they evolve extremely quickly, which supports a hypothesis proposed by the evolutionary biologist Allan Wilson, who suggested that the rate of molecular evolution was uncoupled from the rate of morphological evolution."

Allan Wilson was a pioneer of molecular evolution. His ideas were controversial when introduced 40 years ago, but this new research supports them.

Professor Lambert says the finding will be helpful in terms of future study and conservation of the tuatara, and the team now hopes to extend the work to look at the evolution of other animal species.

"We want to go on and measure the rate of molecular evolution for humans, as well as doing more work with moa and Antarctic fish to see if rates of DNA change are uncoupled in these species. There are human mummies in the Andes and some very good samples in Siberia where we have some collaborators, so we are hopeful we will be able to measure the rate of human evolution in these animals too."

The tuatara, Sphendon punctatus, is found only in New Zealand and is the only surviving member of a distinct reptilian order Sphehodontia that lived alongside early dinosaurs and separated from other reptiles 200 million years ago in the Upper Triassic period.

Journal reference: Lambert et al.:"Rapid molecular evolution in a living fossil." Researchers include Jennifer M. Hay, Sankar Subramanian, Craig D. Millar, Elmira Mohandesan and David M. Lambert, Trends in Genetics. March 2008. (http://dx.doi.org/10.1016/j.tig.2007.12.002)


Adapted from materials provided by Cell Press, via EurekAlert!, a service of AAAS.

Source: http://www.sciencedaily.com­ /releases/2008/03/080320120708.htm
read more...

Teori evolusi menyatakan bahwa makhluk hidup di muka bumi tercipta sebagai akibat dari peristiwa kebetulan dan muncul dengan sendirinya dari kondisi alamiah. Teori ini bukanlah hukum ilmiah maupun fakta yang sudah terbukti. Di balik topeng ilmiahnya, teori ini adalah pandangan hidup materialis yang dijejalkan ke dalam masyarakat oleh kaum Darwinis. Dasar-dasar teori ini - yang telah digugurkan oleh bukti-bukti ilmiah di segala bidang - adalah cara-cara mempengaruhi dan propaganda, yang terdiri atas tipuan, kepalsuan, kontradiksi, kecurangan, dan ilusi permainan sulap.

Teori evolusi diajukan sebagai hipotesa rekaan di tengah konteks pemahaman ilmiah abad kesembilan belas yang masih terbelakang, yang hingga hari ini belum pernah didukung oleh percobaan atau penemuan ilmiah apa pun. Sebaliknya, semua metode yang bertujuan membuktikan keabsahan teori ini justru berakhir dengan pembuktian ketidakabsahannya.

Namun, bahkan sekarang, masih banyak orang beranggapan bahwa evolusi adalah fakta yang sudah terbukti kebenarannya - layaknya gaya tarik bumi atau hukum benda terapung. Sebab, seperti telah dinyatakan di muka, teori evolusi sesungguhnya sangatlah berbeda dari yang diterima masyarakat selama ini. Oleh sebab itu, pada umumnya orang tidak tahu betapa buruknya landasan berpijak teori ini; betapa teori ini sudah digagalkan oleh bukti ilmiah pada setiap langkahnya; dan betapa para evolusionis terus berupaya menghidupkan teori evolusi, walaupun teori ini sudah "menghadapi ajalnya". Para evolusionis hanya mengandalkan hipotesa yang tak terbukti, pengamatan yang penuh prasangka dan tak sesuai kenyataan, gambar-gambar khayal, cara-cara yang mampu mempengaruhi kejiwaan, dusta yang tak terhitung jumlahnya, serta teknik-teknik sulap.


Di masa Darwin, struktur sel yang rumit belum diketahui sedikit pun.

Kini, berbagai cabang ilmu pengetahuan seperti paleontologi (cabang geologi yang mengkaji kehidupan pra-sejarah melalui fosil - penerj.), genetika, biokimia dan biologi molekuler telah membuktikan bahwa tak mungkin makhluk hidup tercipta akibat kebetulan atau muncul dengan sendirinya dari kondisi alamiah. Sel hidup, demikian dunia ilmiah sepakat, adalah struktur paling kompleks yang pernah ditemukan manusia. Ilmu pengetahuan modern mengungkapkan bahwa satu sel hidup saja memiliki struktur dan berbagai sistem rumit dan saling terkait, yang jauh lebih kompleks daripada sebuah kota besar. Struktur kompleks seperti ini hanya dapat berfungsi apabila masing-masing bagian penyusunnya muncul secara bersamaan dan dalam keadaan sudah berfungsi sepenuhnya. Jika tidak, struktur tersebut tidak akan berguna, dan semakin lama akan rusak dan musnah. Tak mungkin semua bagian penyusun sel itu berkembang secara kebetulan dalam jutaan tahun, seperti pernyataan teori evolusi. Oleh sebab itulah, rancangan yang begitu kompleks dari sebuah sel saja, sudah jelas-jelas menunjukkan bahwa Tuhan-lah yang menciptakan makhluk hidup. (Keterangan lebih rinci dapat dibaca dalam buku Harun Yahya, Miracle in the Cell).

Akan tetapi, para pembela filsafat materialis tidak bersedia menerima fakta penciptaan karena beragam alasan ideologis. Hal ini disebabkan kemunculan dan perkembangan masyarakat yang hidup dengan berpedomankan akhlak mulia yang diajarkan agama yang sejati kepada ummat manusia melalui perintah dan larangan Tuhan bukanlah menjadi harapan kaum materialis ini. Masyarakat yang tumbuh tanpa nilai moral dan spiritual lebih disukai kalangan ini, sebab mereka dapat memanipulasi masyarakat yang demikian demi keuntungan duniawi mereka sendiri. Itulah sebabnya, kaum materialis mencoba terus memaksakan teori evolusi - yang berisi dusta bahwa manusia tidak diciptakan, tetapi muncul atas faktor kebetulan dan berevolusi dari jenis binatang - serta, dengan segala cara, berupaya mempertahankan teori evolusi agar tetap hidup. Kaum materialis meninggalkan akal sehat dan nalar, serta mempertahankan omong-kosong ini di setiap kesempatan, walaupun bukti ilmiah dengan jelas telah menghancurkan teori evolusi dan menegaskan fakta penciptaan.

Sebenarnya telah dibuktikan bahwa adalah mustahil apabila sel hidup yang pertama - atau bahkan satu saja dari berjuta-juta molekul protein dalam sel itu - dapat muncul atas faktor kebetulan. Ini bukan saja ditunjukkan melalui berbagai percobaan dan pengamatan, melainkan juga melalui perhitungan probabilitas secara matematis. Dengan kata lain, evolusi gugur di langkah pertama: yaitu dalam menjelaskan kemunculan sel hidup yang pertama.

Sel, satuan terkecil makhluk hidup, tidak mungkin muncul secara kebetulan dalam kondisi primitif tanpa kendali di saat Bumi masih muda - seperti yang dipaksakan kaum evolusionis kepada kita agar percaya. Jangankan dalam kondisi demikian, dalam laboratorium tercanggih di abad ini sekali pun, hal itu mustahil terjadi. Asam-asam amino, yaitu satuan pembentuk berbagai protein penyusun sel hidup, tak mampu dengan sendirinya membentuk organel-organel di dalam sel seperti mitokondria, ribosom, membran sel, ataupun retikulum endoplasma - apalagi membentuk sebuah sel yang utuh. Oleh sebab itu, pernyataan bahwa sel pertama terbentuk secara kebetulan melalui proses evolusi, hanyalah hasil rekaan yang sepenuhnya didasarkan pada daya khayal.

Sel hidup, yang sampai kini masih mengandung banyak rahasia, adalah satu di antara sekian banyak kesulitan utama yang dihadapi teori evolusi.


Berbagai contoh struktur yang rumit dalam sel: Kanan, ribosom, tempat berlangsungnya pembuatan protein dalam sel. Kiri, sebuah nukleosom, yang membungkus satuan-satuan DNA dalam kromosom. Di dalam sel terdapat banyak sistem dan struktur yang rumit seperti ini, bahkan yang lebih kompleks lagi. Pengetahuan bahwa struktur yang demikian kompleks itu - yang semakin terungkap seiring dengan kemajuan teknologi - tidak mungkin terbentuk secara kebetulan, telah menempatkan para evolusionis dalam kesulitan yang takkan dapat mereka pecahkan.



Francis Crick

Dilema mengkhawatirkan lainnya (dari sudut pandang evolusionis) adalah molekul DNA yang terdapat di dalam inti sel hidup, sebuah sistem kode yang terdiri dari 3,5 miliar satuan berisi semua rincian makhluk hidup. DNA pertama kali ditemukan melalui kristalografi sinar-X pada akhir tahun 1940-an dan awal 1950-an, dan merupakan sebuah molekul raksasa dengan rancangan yang luar biasa. Selama bertahun-tahun, Francis Crick, pemenang hadiah Nobel, meyakini teori evolusi molekuler. Namun pada akhirnya, ia sendiri pun harus mengakui bahwa molekul yang begitu rumit tak mungkin muncul dengan sendirinya secara tiba-tiba karena kebetulan, sebagai hasil dari sebuah proses evolusi:


Sejak teori Darwin menguasai dunia ilmu pengetahuan sampai hari ini, teori ini dianggap sebagai dasar ilmu paleontologi. Akan tetapi, hasil-hasil penggalian di berbagai bagian dunia ternyata bertentangan dengan teori ini, dan bukan mendukungnya. Berbagai fosil menunjukkan, makhluk hidup muncul secara tiba-tiba dan dalam keadaan telah lengkap sempurna - dengan kata lain, diciptakan.

Seseorang yang jujur, dengan pemahaman keilmuan yang ada sekarang, saat ini hanya dapat menyatakan bahwa asal mula kehidupan nampak bagaikan sebuah keajaiban.1

Evolusionis berkebangsaan Turki, Profesor Ali Demirsoy, terpaksa memberikan pengakuan sebagai berikut:

Sebenarnya, kemungkinan terbentuknya sebuah protein dan asam nukleat (DNA-RNA) adalah di luar batas perhitungan. Lebih jauh lagi, peluang munculnya suatu rantai protein adalah sedemikian kecilnya sehingga bisa disebut astronomis (tidak mungkin). 2

Homer Jacobson, Profesor Emeritus di bidang Ilmu Kimia, menyatakan pengakuan tentang kemustahilan munculnya kehidupan akibat faktor kebetulan, sebagai berikut:

Petunjuk untuk reproduksi rencana, untuk energi dan untuk pengambilan bagian-bagian dari lingkungan sekitar, untuk urutan pertumbuhan, dan untuk mekanisme efektor yang menerjemahkan instruksi menjadi pertumbuhan - semua itu harus ada secara serentak pada saat tersebut [saat awal munculnya kehidupan]. Kemungkinan kombinasi semua peristiwa itu secara kebetulan tampaknya sungguh luar biasa kecil … 3


Rayap berusia dua puluh lima juta tahun, yang utuh dan awet dalam batu amber (resin fosil transparan berwarna kuning kecoklatan). Rayap ini tidak berbeda dari rayap zaman sekarang.

Catatan fosil pun menyajikan fakta lain, yang menjadi kekalahan telak bagi teori evolusi. Dari seluruh fosil yang telah ditemukan selama ini, tidak ada satu pun bentuk antara (bentuk peralihan) yang ditemukan, yang seharusnya ada jika makhluk hidup berevolusi tahap demi tahap dari spesies yang sederhana menjadi spesies yang lebih kompleks, seperti yang dinyatakan oleh teori evolusi. Jika makhluk seperti itu ada, seharusnya jumlahnya banyak sekali, berjuta-juta, bahkan bermiliar-miliar. Lebih dari itu, sisa dan kerangka makhluk semacam itu haruslah ada dalam catatan fosil. Kalau bentuk-bentuk antara ini benar-benar ada, jumlahnya akan melebihi jumlah spesies binatang yang kita kenal di masa kini. Seluruh dunia akan penuh dengan fosil makhluk tersebut. Para evolusionis mencari bentuk-bentuk antara ini di semua penelitian fosil yang menggebu-gebu, yang telah dilangsungkan sejak abad kesembilan belas. Akan tetapi, sama sekali tidak ditemukan jejak-jejak makhluk perantara ini, meskipun pencarian telah dilakukan dengan penuh semangat selama 150 tahun.

Singkat kata, catatan fosil menunjukkan bahwa makhluk hidup muncul secara tiba-tiba dan dalam wujud sempurna, bukan melalui sebuah proses dari bentuk primitif menuju tahap yang lebih maju, seperti yang dinyatakan teori evolusi.

Kaum evolusionis telah berusaha keras untuk membuktikan kebenaran teori mereka. Namun nyatanya, dengan tangannya sendiri, mereka justru telah membuktikan bahwa proses evolusi adalah mustahil. Kesimpulannya, ilmu pengetahuan modern mengungkapkan fakta yang tak mungkin disangkal berikut ini: Kemunculan makhluk hidup bukanlah akibat faktor kebetulan yang buta, melainkan hasil ciptaan Tuhan.

Sumber: http://www.harunyahya.com/indo/buku/pertanyaan001.htm

read more...

A team of 13 scientists led by Indiana University Bloomington biologists Rudolf and Elizabeth Raff found that the invasion of dying embryo cells by bacteria -- and the subsequent formation of densely packed bacterial biofilms inside the embryo cells -- can completely replace embryo cell structure, generating a faithful replica of the embryo. The scientists call this formation a "pseudomorph," a model of the embryo made of bacteria. Their report will appear online via the Proceedings of the National Academy of Sciences "Early Edition" as early as Nov. 24.

"The bacteria consume and replace all the cytoplasm in the cells, generating a little sculpture of the embryo," said Elizabeth Raff, the report's lead author. "We did find, however, that certain conditions must be met if the bacteria are going to aid the preservation process."

Among those conditions, Raff said that at the time of its death, the embryo must exist in a low-oxygen or reducing environment, such as the bottom of a deep ocean or buried in anoxic lakeside mud. If significant oxygen is available, the embryo will undergo "autolysis," or self-destruction, as digestive enzymes get free and wreak havoc. Without oxygen, autolytic enzymes remain stuck inside their organelle prisons.

"The next step, we believe, is that bacteria able to survive in low-oxygen conditions must then infest the cells of the dying embryo," Raff said.

The bacteria form biofilms, crowded assemblies of bacterial cells held together by sticky fibers made of proteins and sugars. As the biofilms fill the embryo cells, the tiny bacteria insinuate themselves between and among the organelles, forming a faithful representation of the cell's innards.

Lastly, the bacteria must leave a permanent record. In the case of finely preserved fossil embryos, the bacteria likely excrete tiny crystals of calcium phosphate (CaPO4), which eventually replace the bacterial sculptures. It is these crystals, Raff says, that provide the support for embryo and soft tissue fossilization.

"That's a crucial step," said Rudolf Raff. "Calcium deposits can show us even minute details of structure and shape, not only of the bacteria laying down the minerals, but also of the embryo cell structures all around them. In our experiments, we observed bacteria depositing calcium carbonate (CaCO3), but not calcium phosphate. We'll need to simulate different conditions to fully replicate this step."

High resolution imaging of a trove of half-a-billion-year-old animal embryo fossils from Doushantuo, China, provided scientists with tantalizing evidence that bacteria may have been involved in the preservation of the delicate cells. Scanning electron microscopy shows oblong concavities on the surface of the embryo fossils, suggesting the cells had been infested with bacteria or bacterial biofilms.

The research presented in the PNAS paper reveals how bacteria-aided fossilization could happen.

The Raffs studied early-stage embryos of two Australian sea urchin species, Heliocidaris erythrogramma and Heliocidaris tuberculata. The experimental results with modern embryos were compared to the high resolution images of fossil embryos prepared by colleagues from China, England, Sweden, and Switzerland.

The scientists examined embryos in the presence of high and low oxygen, with or without inoculums of oxygen-poor marine mud, and in the presence or absence of bacteria-killing antibiotics. In the experiments that produced embryo-infesting biofilms, the scientists used DNA sequence comparisons to identify the bacterial species present.

The researchers learned low-oxygen conditions block autolysis, and that embryos prevented from autolyzing are quickly colonized by marine bacteria. Once inside, the bacteria form biofilms that fill the embryo cells. Sturdy cell membranes and the embryo's fertilization envelope provide the exterior cast. These biofilms formed detailed replicas of the embryos they had replaced.

Species of the common marine bacterium Pseudoalteromonas provided the majority of the bacterial flora present inside the embryo cells under aerobic conditions. Under oxygen-poor conditions, a much greater diversity of bacterial species was present, not detectable under aerobic conditions.

The scientists also examined oxygen-starved embryos exposed to inoculums of oxygen-poor marine mud, and again found a high diversity of bacterial flora present in embryo replica biofilms, with species of the Bacteroidetes phylum being most common.

Although it is impossible to know whether bacteria aided the preservation of 550-million-year-old embryo fossils from Doushantuo and elsewhere, the Raffs argue the evidence they gathered strongly favors the view that bacteria are a fundamental force in fossil formation, as rapid biological processes must be available to convert highly delicate cells into a stable form and catalyse mineralization.

"This work is important because it helps us understand fossilization as a biological as well as geological process," Elizabeth Raff said. "It gives us a window onto the evolution of the embryos of the earth's first animals."

Kaila Schollaert, David Nelson, F. Rudolf Turner, Barry Stein (Indiana University Bloomington), Philip Donoghue, Ceri-Wyn Thomas (University of Bristol), Xiping Dong (Peking University), Stefan Bengtson (Swedish Museum of Natural History), Therese Huldtgren (Swedish Museum of Natural History and Stockholm University), Marco Stampanoni (Paul Scherrer Institute and Institute for Biomedical Engineering), and Yin Chongyu (Chinese Academy of Geological Scientists) also contributed to this report. The Raffs' research was supported largely by Indiana University.


Adapted from materials provided by Indiana University, via EurekAlert!, a service of AAAS.
Source: http://www.sciencedaily.com/releases/2008/11/081124174859.htm
read more...

Teknik Guitar sweeping

Berikut ini penjelasan sedikit deskripsi tentang teknik arpeggio/sweeping pada gitar, silakan dicoba yak, teknik ini memang teknik tinggi pada gitar, dan sangat sulit dipelajari, karena kita harus sering-sering melakukan latihan.

Apakah arpeggio ?

arpeggio adalah notasi sempurna dari sebuah chord yang dipetik secara bergantian, sebenarnya bukan hal yang rumit, karena jika anda mainkan pada sebuah gitar akustik kemudia anda mainkan chord sempurna ato banyak org selalu dan biasa menyebutnya dengan kata chord balok ato not balok kemudian anda strum ato petik, maka hal itu sama dengan arpeggio….

pada gitar listrik sendiri apalagi pada musik neoklasikal banyak menerapkan arpeggio, karena mereka memang banyak mengambil dari notasi pada biola, seperti contohnya yngwie mamlsteen, jason becker, impelliteri, dkk

|———————–7(turun)–12(naik)p7——————|
|——————–8(turun)—————-8(naik)—————|
|—————–9(turun)———————-9(naik)———–
|————–9(turun)—————————-9(naik)———
|7(turun)–10(naik)————————————10(naik)–7(turun)–|
|——————————————————————
tulisan naik-turun dalam kurung adalah contoh dari pergerakan pick.

ini salah satu contoh arpeggio dari not e minor dan ternyata not dari arpeggio e minor tersebut sama dengan chord e minor, dimana arpeggio ini cara memetiknya dilakukan dengan gerakan sapuan (sweep), kecuali jika ada 2 not dalam satu senar maka memetiknya tetap dengan cara alternate yaitu naik-turun, dalam memetik arpeggio ini sebaiknya dilakukan perlahan dulu, dan yang paling penting adalah not satu dengan yang lainnya harganya harus sama, jangan not satu lebih cepat kemudian not lainnya lebih lambat.

dan sweep adalah bagian dari arpeggio, biasanya yang dipetik adalah 3 senar bawah dari arpeggio.

(taken from http://www.indonesiaindonesia.com/f/19273-tekhnik-sweeping-pd-gitar/)

Sumber: http://arisme.com/story/?p=103

read more...

ScienceDaily (Nov. 13, 2008) — Colugos (aka flying lemurs)—the closest living relatives of primates most notable for their ability to glide from tree to tree over considerable distances—are more diverse than had previously been believed, according to a new report published in the November 11th issue of Current Biology.





Primates are most familiarly represented by monkeys and apes, the group including humans.

Scientists had recognized just two species of these enigmatic mammals, the Sunda colugo and the Philippine colugo. However, the new findings show that the Sunda colugo, found only in Indochina and Sundaland, including the large islands of Borneo, Sumatra, and Java, actually represents at least three separate species.

"We were guessing that we might find that there were different species of Sunda colugo—although we were not sure," said Jan Janecka of Texas A&M University. "But what really surprised us was how old the speciation events were. Some went back four to five million years," making the colugo species as old as other modern species groups (or genera) such as the primates known as macaques and the leopard cats.

The team's initial hunch that the Sunda colugos might be distinct species came largely from obvious differences in characteristics like body size and color. In the new study, they compared the DNA of colugos living on the mainland, Java, and Borneo, uncovering enough divergence between the sequences to warrant their designation as three species.

Janecka said they were particularly surprised to find that each geographic region they studied harbors its own unique species of colugo. And the species tally for colugos will likely continue to rise. "It appears that within smaller geographic areas, for example Java, there are divergent colugo lineages that could prove to be separate species," he added.

That diversification might be explained by the colugos' unusual way of getting around. While they have the most developed gliding membrane of any mammal, they are nearly helpless on the ground, leaving them incapable of crossing large open spaces that lack trees. As sea levels, forest communities, and river systems fluctuated in Sundaland over the last 10 million years, Janecka speculates that isolated colugo populations would have undergone greater diversification from one another than other, more mobile mammals.

The findings have important conservation implications for the colugos, which had been largely ignored because of their apparent abundance.

"Until now, reductions in colugo numbers was considered just a range contraction, and so there were no conservation plans for restoring them or mitigating their loss," Janecka said, noting that the colugos occupy areas that are now experiencing some of the most rapid loss of forest habitat in the world. "However, this is no longer the case; we now need to re-assess the status of each of these species to determine which of them are under threat of extinction, and develop conservation plans that ensure their persistence. In addition, some of the small isolated populations that were previously described as subspecies may also represent new species, which could disappear before we even realize they exist."

The researchers include Jan E. Janecka, Texas A&M University, College Station, TX; Kristofer M. Helgen, National Museum of Natural History, Smithsonian Institution, Washington, D.C.; Norman T-L. Lim, Raffles Museum of Biodiversity Research, National University of Singapore, Singapore; Minoru Baba, Kitakyushu Museum of Natural History and Human History, Kitakyushu, Japan; Masako Izawa, University of the Ryukyus, Okinawa, Japan; Boeadi, Museum Zoologi Bogor (Museum Zoologicum Bogoriense), Cibinong, Indonesia; and William J. Murphy, Texas A&M University, College Station, TX.


Source: http://www.sciencedaily.com read more...

The results are in from MESSENGER’s second flyby of Mercury, one of the least-explored planets in the solar system
access
Scientists merged high-resolution visual and near-infrared photographs from MESSENGER's second flyby of Mercury to create images that show the planet's surface. Regions covered in dark blue material were likely excavated during a surface impact. MESSENGER scientists believe that the composition of Mercury’s crust is marbled.NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

A smoother Western hemisphere, mysterious material unearthed by impacts, magnesium in the exosphere and a dynamic magnetic field are some of the newly identified features of Mercury revealed by MESSENGER during its second flyby of one of the least-explored planets.

The spacecraft MESSENGER skirted Mercury’s surface on October 6 in the second of three scheduled flybys before ultimately entering the planet’s orbit in 2011. During the second flyby, MESSENGER captured over 1,200 images, including never-before-seen views of the Western hemisphere of the planet closest to the sun. Scientists unveiled their findings in an October 29 press briefing at NASA headquarters in Washington, D.C.

This new data, when combined with images collected from MESSENGER’s first flyby and data from Mariner 10 — the only other spacecraft to image Mercury in the 1970s — surveys about 95 percent of the planet, giving researchers a global view of the body.

Topographical data from MESSENGER’s powerful laser altimeter yielded one of the biggest surprises of the second flyby: Scientists learned that the Western hemisphere is about 30 percent smoother than the Eastern hemisphere. This difference could have been caused by a global geological event sometime during Mercury’s early life. “That’s something we’re excited to follow up on,” said MESSENGER coinvestigator Maria Zuber, an MIT geophysicist, during the press conference.

MESSENGER also sent back information on new surface features, one of which is a peak in the wrinkle ridge. This mountainous range is thought to have formed during a major contraction that happened when Mercury’s hot iron core cooled. The newly discovered peak is 600 meters high, nearly twice the size of the tallest ridges measured on Mars, although Zuber cautions that, as of now, scientists are still working with a very small data set.

To investigate the makeup of Mercury’s crust, scientists merged high-resolution visual and near-infrared photographs to create images that showed, in great detail, compositional variations. Colors that would appear dull to naked human eyes were transformed into intense blues and yellows. The color images identified brilliant blue regions on the surface of Mercury, consisting of material thought to have once been buried. Impacts may have brought this material to the surface, but surprisingly, craters of equal size elsewhere do not have the material around them, suggesting the blue material is concentrated in splotches underneath the surface.

“The bottom line is that the crust is very heterogeneous,” explains MESSENGER coinvestigator Mark Robinson of Arizona State University in Tempe. Because the flyby was too brief to engage all of MESSENGER’s science tools, scientists will have to wait until MESSENGER is in orbit before they know the makeup of the blue stuff. Robinson says that he is looking forward to getting MESSENGER into orbit, so that “I can stop saying ‘blue material.’ ”

MESSENGER was also able to probe Mercury’s tenuous atmosphere, called an exosphere, and found that two elements known to exist in its tail-shaped region, sodium and calcium, were not distributed evenly. This unequal distribution could provide clues about events on Mercury’s surface that kick these elements into the exosphere. The flyby also detected magnesium in the exosphere for the first time, says Ronald Vervack Jr., MESSENGER scientist at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.

Scientists were surprised by MESSENGER’s findings on the magnetosphere. Data beamed back revealed that the solar wind affects Mercury’s magnetic field to a much greater extent than previously thought. The craft’s first flyby saw solar winds blowing north and exerting a small but noticeable effect on the planet’s magnetosphere. This time around, MESSENGER caught the southbound solar wind pushing Mercury’s magnetosphere back toward the planet with surprising strength in what Sean Solomon, principal investigator for MESSENGER at the Carnegie Institution for Science in Washington, D.C., calls an “extreme example in the solar system.” Brian Anderson, MESSENGER deputy project scientist at Johns Hopkins’ APL, said “I have never seen a magnetic field pointed this strongly at a planet.”

In addition to uncovering new visions of Mercury, this flyby also provided MESSENGER with a critical gravity assist, a maneuver required to keep the craft on course to be the first to enter Mercury’s orbit, in 2011, where it will remain for one Earth year.

Source: www.sciencenews.org

read more...


A 5,000-year-old mummy displays a genetic signature no longer found in Europe, according to its complete mitochondrial DNA sequence.

It’s been 17 years since a prehistoric man’s frozen body was found poking out of a glacier in the Italian Alps, and the mummified corpse continues to warm scientists’ hearts. The Tyrolean Iceman, or Ötzi, now has yielded the oldest complete human mitochondrial DNA sequence generated to date, say molecular biologist Franco Rollo of the University of Camerino, Italy, and his colleagues.

Mitochondria are molecular structures that provide power to cells. Because the structures contain DNA that is passed from mothers to their children, a mitochondrial DNA sequences provides a view of a person’s female ancestry.

“This study further confirms that, with new sequencing approaches, mitochondrial DNA from ancient samples can be completely sequenced,” remarks geneticist Antonio Torroni of the University of Pavia, Italy.

Ötzi, who lived between 5,350 and 5,100 years ago, belonged to a branch of a mitochondrial DNA line that has yet to be identified in modern Europeans, Rollo’s team reports in a paper published online October 30 in Current Biology. Ötzi’s ancient genetic comrades may have gotten swamped by other mitochondrial DNA lines as people congregated in increasingly larger settlements, the scientists suggest. Random changes in the mitochondrial DNA of Ötzi’s peers may have contributed to the absence of a match as well.

Further genetic studies of modern Europeans might identify some who belong to what Rollo’s group has dubbed “Ötzi’s branch.”

“Through the analysis of a complete mitochondrial genome in a particularly well-preserved body, we have obtained evidence of a significant genetic difference between present-day Europeans and a prehistoric human, despite the fact that the Iceman is only about 5,000 years old,” Rollo says.

Researchers estimate that the Iceman was approximately 46 years old when he was severely wounded by an arrow and then killed by a mace blow to the face. Rollo’s team isolated genetic material from Ötzi’s intestines in order to minimize the possibility of DNA contamination from human handling of the body.

Ancient DNA, whether from mitochondria or cell nuclei, is highly prone to contamination from human handling and chemicals used in laboratory tests, says evolutionary biologist Eske Willerslev of the University of Copenhagen. Due to its nonporous structure, hair proves especially resistant to such contamination, in his view.

“Because the Rollo team used intestinal material from the mummy, it is difficult to exclude the possibility that their unique mitochondrial DNA lineage is a result of contaminant DNA mixing in with Ötzi’s own genetic sequences,” Willerslev remarks.

In 2006, Rollo and his coworkers reported that fragments of mitochondrial DNA recovered from the Iceman’s intestines showed that he belonged to a lineage known as K1. About 8 percent of modern Europeans belong to the K haplogroup, meaning that they share a common maternal ancestor. That haplogroup is divided into K1 and K2 lineages. Studies on modern Europeans before 2006 identified three branches of the K1 lineage.

In the new study, the researchers used advanced genome-sequencing technologies to retrieve a complete version of Ötzi’s mitochondrial DNA. A comparison to 115 complete haplogroup K genomes from modern Europeans showed that the prehistoric man came from a newly identified, fourth branch of K1.

It’s possible but unlikely that Ötzi belonged to a fourth branch of K1 that is now extinct or rare, Torroni says. He considers it more probable that a random mutation in the Iceman’s mitochondrial DNA erased the only genetic marker currently used to identify members of the most common K1 branch.

Complete mitochondrial genomes of ancient people remain rare. One such sequence comes from the frozen hair of a person who lived in Greenland between 4,500 and 3,400 years ago. In the June 27 Science, a team led by Willerslev reported that this individual’s mitochondrial DNA differs substantially from that of later Eskimos and that of modern Native Americans.

The Greenland individual does display genetic links to modern Aleuts and Siberians, suggesting that the earliest New World migrants came from the Bering Sea area and were later replaced by other populations, the researchers conclude.

Another team recently isolated a complete mitochondrial DNA sequence from a 38,000-year-old Neandertal bone. Many researchers classify Neandertals as a species separate from modern humans.

Source: www.sciencenews.org read more...

Evolution of submarines

The following timeline summarizes the evolution of submarine design, from the submarine's beginning as a human-powered warship to today's nuclear powered subs.

1578

The first submarine design was drafted by William Borne but never got past the drawing stage. Borne's submarine design was based on ballast tanks which could be filled to submerge and evacuated to surface - these same principles are in use by today's submarines.

1620

Cornelis Drebbel, a Dutchman, conceived and built an oared submersible. Drebbels' submarine design was the first to address the problem of air replenishment while submerged.

1776

David Bushnell's Turtle SubmarineFrancis Barber
David Bushnell builds the one-man human powered Turtle submarine. The Colonial Army attempted to sink the British warship HMS Eagle with the Turtle. The first submarine to dive, surface and be used in Naval combat, its intended purpose was to break the British naval blockade of New York harbor during the American Revolution. With slight positive buoyancy, it floated with approximately six inches of exposed surface. Turtle was powered by a hand-driven propeller. The operator would submerge under the target, and using a screw projecting from the top of Turtle, he would attach a clock-detonated explosive charge.

1798

Robert Fulton's "Nautilus" SubmarineLOC
Robert Fulton builds the Nautilus submarine which incorporates two forms of power for propulsion - a sail while on the surface and a hand-cranked screw while submerged.

1895

Holland VIILOC
John P. Holland introduces the Holland VII and later the Holland VIII (1900). The Holland VIII with its petroleum engine for surface propulsion and electric engine for submerged operations served as the blueprint adopted by all the world's navies for submarine design up to 1914.

1904

The French submarine Aigette is the first submarine built with a diesel engine for surface propulsion and electric engine for submerged operations. Diesel fuel is less volatile than petroleum and is the preferred fuel for current and future conventionally powered submarine designs.

1943

The German U-boat U-264 is equipped with a snorkel mast. This mast which provides air to the diesel engine allows the submarine to operate the engine at a shallow depth and recharge the batteries

1944

The German U-791 uses Hydrogen Peroxide as an alternative fuel source.

1954

USS NautilusU.S. Navy
The U.S. launches the USS Nautilus - the world's first nuclear powered submarine. Nuclear power enables submarines to become true "submersibles" - able to operate underwater for an indefinite period of time. The development of the Naval nuclear propulsion plant was the work of a team Navy, government and contractor engineers led by Captain Hyman G. Rickover.

1958

USS Skipjack U.S Navy
The U.S. introduces the USS Albacore with a "tear drop" hull design to reduce underwater resistance and allow greater submerged speed and maneuverability. The first submarine class to use this new hull design is the USS Skipjack.

1959

USS George Washington U.S. Navy
The USS George Washington is the world's first nuclear powered ballistic missile firing submarine.

Source: inventors.about.com
read more...

INSERTS:

On a traditional consol, an Insert is a set of connections in a channel path that would allow you to "insert" an external piece of audio processing hardware into the signal path. Of course, you don't actually insert the physical piece of hardware! It's simply a set of audio connections, usually wired to a patchbay in big studios, that allow you to send the signal out to the external hardware, and then bring the processed audio back into the same signal. If nothing was plugged into the insert, the audio proceeds through the channel normally. As soon as you plugged something into the insert, the normal signal path was broken, and the audio was routed out to whatever you patched into the insert, and then returned back to the channel signal path. Usually there is a pair of connections, an "insert send" for sending the audio out to the external gear's input, and then an "insert return" for patching in the output of the external gear back into the channel. On some lower cost home consoles, the insert jacks use one TRS style connector, which requires a special "insert cable" that breaks that connection out to separate send and return connectors on the other end, for patching to the inputs and outputs of your external gear.

In terms of signal flow, the channel insert connections usually come right after the microphone pre-amps for that channel. So, any external gear you insert will come before the channel EQ, Fader, and Pan. On some consoles, there are switches that allow you to change the EQ, or at least the hi and low pass filters, to come before the channel inserts in the signal chain.

If you wanted to insert more than one piece of external hardware into the signal path, you simply daisy chained them, connection the output of the first piece to the input of the next piece, and finally taking the output of the last piece of hardware back into the channel insert return.

Now with modern software based DAW systems, we have plenty of power and flexibility to work with. Most DAW systems have multiple inserts for each channel that allow you to add software based "plug-in" processors. Some of the newer DAW systems now even allow you to insert external hardware into the software chain using special insert plug-ins that you configure to route audio to and from your choice of audio connecctions on your audio interface, and then the software will allow you to do a "ping" of the channel path to compute, and automatically correct for, the latency of the connections (the round trip time it takes for the audio to go out through your audio interface, through the hardware, and then back into the audio interface... since all audio interfaces have a certain amount of processing delay time that the introduce).

Some DAW programs have a fixed number of insert slots on each channel, while other software allows you to add plug-in/insert slots as needed for the channels. Programs like Nuendo/Cubase, for example, have a fixed number of insert slots, with most of them being configured as pre-fader, and the last couple of slots set up as post fader. Some software will allow you to configure whether the inserts are pre or post fader, while others do not give you the option.

That's all well and good, BUT, you ask, What Do I Use An Insert For?

In the traditional analog world, inserts were used for hardware processors where you only wanted to hear the resultant processed audio, with none of the original, un-processed, audio passing through. These are typically dynamic processors and equalisers or other enhancers. Compressors, Expanders, Noise Gates, Transient Shapers, outboard parametric or graphic Equalisers, Sonic Maximisers, and Aural Exciters are common examples. These types of processors don't have any dry/wet blending features because you typically only want to hear the fully processed output, with none of the unprocessed original audio, when you are using these types of processors to modify your audio.

Of course, there are no rules, and sometimes you may want use some of these types of processing in a more extreme way as an effect, and blend the processed audio back in with the original. I'll discuss that a bit later after I discuss effect sends.

EFFECTS / AUXILIARY SENDS:

Effects and Auxiliary sends can be used for a variety of purposes, including creating monitor mixes for the musicians headphones during recording, or on-stage monitors in a live performance. However, for this article I'm going to concentrate on how effects sends are used for audio processing while recording or mixing.

Again, going back to our traditional analog recording setups, most big analog studios had a fixed number of processing hardware to work with, especially things like reverb, delay, and other "time based" effects processors (such as chorus and flange). In fact, in the really old days before digital hardware reverb and delay processors, the only reverb you had available was what you could get out of the room while recording, or through special acoustic reverb chambers that were setup elsewhere in the studio facility (these were basically a small, but long, chamber with a speaker at one end and a microphone at the other, and you changed the reverb time by moving the microphone closer to the speaker, as well as sometimes a movable wall behind the microphone). Some studios also had analog hardware reverb units, such as spring or plate reverbs.

So, with a limited number of reverbs, delays, and other processors, what happens if you want to use reverb on more channels that you have reverb units? If you only had one reverb processor (analog or digital), you couldn't use channel inserts to put it on more than one channel, since you could only be connected to one insert at a time. This is where the effects send and return structure came in handy. Instead of using inserts, we use an effects send bus to allow us to route a controllable amount of signal from multiple channels to the same effects processor. You take the output of the effects send bus and patch it to the input of your effects processor, and then you take the output of that processor and patch it into an open set of channels on your mixing console, or patch it to dedicated effects return channels on some mixers. Then, using the corresponding effects send knob on each channel, you can control how much of each channel you want to "send" to the processor. This send control is in parallel to the channel, and doesn't change the level of the audio through the channel itself. So, if you wanted a lot of reverb on a vocal, for example, but just a little bit of reverb on the snare drum, you would turn up the effects send (that corresponds with the patched in reverb) on the vocal channel quite a bit, while turning up the effects send on the snare channel just a little bit. The output of the reverb comes back into the mixer on its own channels, or special effects return channels, and you can use those channel faders/knobs to control the overall amount of the returned reverb you hear in the mix. The original channel faders for the vocal and snare, in our example, still control the overall "dry" level of the snare and vocal. So, by setting the sends, return channels, and "dry" channels, you can control the blend of the dry and processed audio in the mix. In most applications, the effects sends are set up to be POST fader, so the signal level to your effects is split off AFTER the fader. The reason for this is that you want your ratio of dry to wet signal to stay the same as you ride the faders for each channel during the mix. For example, once you have the blend of dry and reverb levels set up the way you want for a vocal track, you don't want the reverb level to stay constant if you pull down the level of the vocal in the mix... what you want (most of the time) is for the level of the reverb to come down the same amount as the vocal level comes down when you pull down the vocal channel fader. By setting up the reverb send POST fader, when you pull down the vocal channel fader, the amount of vocal sent to the reverb will be reduced by the same amount, thus preserving your dry/wet blend that you worked so hard to set up!

Almost all mixing consoles have more than one effects send bus so that you can use more than one type of reverb, delay, or other effect during your mix, and share these with multiple audio channels. For example, if you have multiple reverb processors (or chambers) available, you may set one up for a long reverb, one for a short reverb, and maybe even one somewhere in between. You may also want to set up one or more delay processors, maybe one long echo type delay, and one short slapback type delay. Each one of these effects would need to have its own separate effects send bus and return channels. So, you can see how you can easily need 5 or more effects sends during a mix.

Now back to the modern world of powerful computers and DAW software. With plug-in reverbs, delays, and other effects processors, you can have as many instances of these plug-ins running as your computer can handle before you max out the processing power. If you've got a powerful computer and are using effects plug-ins that take up relatively little processing power, there is nothing to stop you from putting a plug-in reverb or delay, or other time based effect, into the insert slots of every channel that you want to have those types of effects. If you did it that way, you would need to use the plug-in's own wet/dry control to set the blend between the dry and processed signal for each effect.

Unless you are setting different effects for every audio channel, though, setting up reverbs, delays, and other time based effects, as inserts is usually a waste of processing power and a bit time consuming as well. In addition, the best sounding reverbs are usually very processor intensive, and you'll quickly max out your computer's processors if you try to insert a high quality reverb on every channel.

It's still usually best to set up processor intensive time based effects, such as reverb, as an effects send and return type of effect. When you set it up this way, you would want the effect set to 100% wet, so that none of the dry signal passes through to the effects return, since you'll be controlling the dry levels with each track's channel faders, and you'll control the overall level of the reverb (or other effect) in the mix with the return level, of the FX channel level. Different DAW programs configure send and return type of effects differently. For example, in Nuendo and Cubase you add an FX channel to your project, which looks like an ordinary channel with several insert slots where you put the effects. When you first create the FX channel in Nuendo or Cubase, it asks you to select the effect you want to use from a drop down list of your available plug-ins. Once you have the FX channel set up, it will appear in the drop down lists for each FX send control on the right side of the channel views in Cubase and Nuendo. With analog mixers, if you connect a reverb to effects send bus 1 on the mixer, that reverb would be associated with effects send 1 of every channel on the mixer. However, with software DAW programs, such as Nuendo and Cubase, you can choose which FX channels each one of your channel sends is associated with, and those are independent from the same numbered effects sends on other channels (although, you can certainly set them all the same way, if you are using the same effect on multiple channels, to keep things easy).

In the analog world, some effects sends on a mixing board are set up to be pre-fader, and others set up to be post fader, while sometimes several of the effects sends would have a switch to change them between pre and post fader. Pre-Fader sends were usually used for creating headphone mixes for the artist that wouldn't change if the recording engineer changed fader levels... thus, giving the artist and the recording engineer independent control over what they want to hear while recording. In most modern DAW software, you can usually change each individual send to be either pre or post fader. For almost all effects processing situations, you would want to leave them at the default post-fader configuration so that the levels of the reverb for each channel change as you change the fader levels of the channels (as described in more detail earlier).

In most situations, you don't need a totally unique reverb or delay, or even chorus/flange, type of effect for every channel. You may want a long/lush reverb, a shorter room type ambient reverb, and maybe one or two in-between reverbs, and similary a long echo type delay, and one or more shorter rhythmic or slap-back type delays. It makes more sense, and saves processing power and setup time, if you set these up on FX channels and use sends and returns to share those effects between all the channels that you want to use each one on, rather than inserting a new instance of each effect in an insert slot on each channel that you want it on.

GOING AGAINST THE "STANDARDS":

Just because the above described methods are the established "standard" method of setting of different types of effects and processing, there are often times when you'll want to set things up differently to achieve certain special effects, or just to control things in a different way. I'll discuss just a couple of them in this section.

One popular method of mixing drums is to use "parallel compression". Instead of inserting compressors on every drum channel that you want to compress, or even routing all the drum tracks to a stereo group channel or buss and compressing that, you can set up a compressor in an effects send and return type configuration. You treat it like you would a time based effect, using the sends on each channel to control how much of each channel gets sent to the compressor, and then using the FX or return channel faders to control how much of the output of the compressor you hear in the mix. The original, uncompressed, drum tracks are still in the mix and controlled by their own faders, but now you can blend in some of the compressed signal as well, and vary the blend of compressed and uncompressed signal throughout the song. This style of parallel compression is typically used when you are using extreme settings on the compressor to get a really heavily compressed, or even distorted, sound, and you blend in just enough of it to give your drum sound a little more "balls". You can bring in a lot more "balls" during heavy sections of the song, and then back it way down in the quiet, or more sparse, sections.

It doesn't have to be a compressor, though. You could do the same parallel thing with a distortion processor to add a controllable amount of distortion, or something like a transient modifier to bring out more attack. In fact, that's one of my favorite mixing tricks now is to set up my transient modifier to really bring out a lot of extra attack. I put that on an FX channel in Nuendo, and only send the kick, snare, and some toms to it. In the quiet verse parts of songs, I usually have that FX channel set pretty low, or even totally off. When things get really heavy and dense, such as when lots of heavy distorted guitars come in, I'll crank up the FX channel to add a lot of extra attack to the drums to help them cut through the wall of guitars.

It also doesn't have to be drums that you use this for. You could do the same thing with vocals, or any other instrument.

Another example of going against the "standard" way of doing things is to set up a reverb on a PRE fader effects send. With it set up this way, the amount of signal from a channel sent to the reverb remains at a constant level, no matter what you do with the channel fader. In this way, you can completely pull down the channel fader, removing ALL of the dry signal, but the reverb signal will remain. This can make a cool fading out into the distance type of effect. You gradually fade down the regular channel fader, which slowly lowers the dry signal level while the reverb level stays the same, making it sound like that audio is getting farther and farther away as it slowly fades to reverb only. That's about the only time I can think of using an effects send to a reverb in a pre-fader setup, but maybe someone else has found other creative uses for pre-fader sends on things like reverb.

Just remember, there is no right or wrong way to do things. I'm just explaining these established "standard" methods of doing things to help save you some time (and processing power) when you are mixing. But, in the end, it all comes down to using your ears and doing what sounds right to you and right for the song!
Source:www.music-and-technology.com
read more...

Infrared

The Infrared

Diagram of the infrared part of the spectrum showing the far, mid, and near ranges.

Infrared light lies between the visible and microwave portions of the electromagnetic spectrum. Infrared light has a range of wavelengths, just like visible light has wavelengths that range from red light to violet. "Near infrared" light is closest in wavelength to visible light and "far infrared" is closer to the microwave region of the electromagnetic spectrum. The longer, far infrared wavelengths are about the size of a pin head and the shorter, near infrared ones are the size of cells, or are microscopic.

Campfire. Far infrared waves are thermal. In other words, we experience this type of infrared radiation every day in the form of heat! The heat that we feel from sunlight, a fire, a radiator or a warm sidewalk is infrared. The temperature-sensitive nerve endings in our skin can detect the difference between inside body temperature and outside skin temperature

Infrared light is even used to heat food sometimes - special lamps that emit thermal infrared waves are often used in fast food restaurants!

Shorter, near infrared waves are not hot at all - in fact you cannot even feel them. These shorter wavelengths are the ones used by your TV's remote control. Image of a television remote control


How can we "see" using the Infrared?

Since the primary source of infrared radiation is heat or thermal radiation, any object which has a temperature radiates in the infrared. Even objects that we think of as being very cold, such as an ice cube, emit infrared. When an object is not quite hot enough to radiate visible light, it will emit most of its energy in the infrared. For example, hot charcoal may not give off light but it does emit infrared radiation which we feel as heat. The warmer the object, the more infrared radiation it emits.

Humans, at normal body temperature, radiate most strongly in the infrared at a wavelength of about 10 microns. (A micron is the term commonly used in astronomy for a micrometer or one millionth of a meter.) This image ( which is courtesy of the Infrared Processing and Analysis Center at CalTech), shows a man holding up a lighted match! Which parts of this image do you think have the warmest temperature? How does the temperature of this man's glasses compare to the temperature of his hand? Infrared man D

Infrared image of a cat.D To make infrared pictures like the one above, we can use special cameras and film that detect differences in temperature, and then assign different brightnesses or false colors to them. This provides a picture that our eyes can interpret.

The image at the left (courtesy of SE-IR Corporation, Goleta, CA) shows a cat in the infrared. The orange areas are the warmest and the white-blue areas are the coldest. This image gives us a different view of a familiar animal as well as information that we could not get from a visible light picture.

Humans may not be able to see infrared light, but did you know that snakes in the pit viper family, like rattlesnakes, have sensory "pits", which are used to image infrared light? This allows the snake to detect warm blooded animals, even in dark burrows! Snakes with 2 sensory pits are even thought to have some depth perception in the infrared! (Thanks to NASA's Infrared Processing and Analysis Center for help with the text in this section.)

Many things besides people and animals emit infrared light - the Earth, the Sun, and far away things like stars and galaxies do also! For a view from Earth orbit, whether we are looking out into space or down at Earth, we can use instruments on board satellites.

Satellites like GOES 6 and Landsat 7 look at the Earth. Special sensors, like those aboard the Landsat 7 satellite, record data about the amount of infrared light reflected or emitted from the Earth's surface. Artist's conception of Landsat 7 orbiting the Earth.
Landsat 7

Other satellites, like the Infrared Astronomy Satellite (IRAS) look up into space and measure the infrared light coming from things like large clouds of dust and gas, stars, and galaxies!


What does the Infrared show us?

This is an infrared image of the Earth taken by the GOES 6 satellite in 1986. A scientist used temperatures to determine which parts of the image were from clouds and which were land and sea. Based on these temperature differences, he colored each separately using 256 colors, giving the image a realistic appearance.

Why use the infrared to image the Earth? While it is easier to distinguish clouds from land in the visible range, there is more detail in the clouds in the infrared. This is great for studying cloud structure. For instance, note that darker clouds are warmer, while lighter clouds are cooler. Southeast of the Galapagos, just west of the coast of South America, there is a place where you can distinctly see multiple layers of clouds, with the warmer clouds at lower altitudes, closer to the ocean that's warming them.

Infrared image of Earth. D
Space Science and Engineering Center,
University of Wisconsin-Madison,
Richard Kohrs, designer

We know, from looking at an infrared image of a cat, that many things emit infrared light. But many things also reflect infrared light, particularly near infrared light. Near infrared radiation is not related to the temperature of the object being photographed - unless the object is very, very hot.

Infrared film 'sees' the object because the Sun (or some other light source) shines infrared light on it and it is reflected or absorbed by the object. You could say that this reflecting or absorbing of infrared helps to determine the object's 'color' - its color being a combination of red, green, blue, and infrared!

This image of a building with a tree and grass shows how Chlorophyll in plants reflect near infrared waves along with visible light waves. Even though we can't see the infrared waves, they are always there. The visible light waves drawn on this picture are green, and the infrared ones are pale red.

Building and tree - visible light
This image was taken with special film that can detect invisible infrared waves. This is a false-color image, just like the one of the cat. False-color infrared images of the Earth frequently use a color scheme like the one shown here, where infrared light is mapped to the visible color of red. This means that everything in this image that appears red is giving off or reflecting infrared light. This makes vegetation like grasa and trees appear to be red. The visible light waves drawn on this picture are green, and the infrared ones are darker red. Same building and tree on infrared film.

Landsat 5 image of Phoenix, Arizona D This is an image of Phoenix, Arizona showing the near infrared data collected by the Landsat 5 satellite. The light areas are areas with high reflectance of near infrared waves. The dark areas show little reflectance. What do you think the black grid lines in the lower right of this image represent?
False-color image of Pheonix, Arizona D This image shows the infrared data (appearing as red) composited with visible light data at the blue and green wavelengths. If near infrared is reflected off of healthy vegetation, what do you think the red square shaped areas are in the lower left of the image?

Instruments on board satellites can also take pictures of things in space. The image below of the center region of our galaxy was taken by IRAS. The hazy, horizontal S-shaped feature that crosses the image is faint heat emitted by dust in the plane of the Solar System.

IRAS image of the MilkywayD
Infrared Processing and Analysis Center, Caltech/JPL
Source:science.hq.nasa.gov/kids/imagers/ems/infrared.html
read more...



Recommended Money Makers

  • Chitika eMiniMalls
  • WidgetBucks
  • Text Link Ads
  • AuctionAds
  • Amazon Associates